
Part 1: Why Does Cloud Native
Development Matter?

Understanding the elements of a cloud-native
development approach

Many aspects of our socio-economic lives are built around applications. That’s why

businesses and organizations must seek the best way to design, build, and use those

applications to stay competitive. Most businesses would agree that cloud-native

application development is the embodiment of the most effective approach to

building, running, and improving applications.

This is still a theoretical belief for far too many businesses. Many have yet to embark

on a cloud-native development approach that can optimize application performance

and cloud value. These businesses understand there are challenges to realizing the

business benefits of cloud-native app development, which we will tackle a little

later.

The bigger challenge is that stakeholders rarely get a clear picture of why cloud-

native development matters to the way they run their business. This blog will break

down the reasons it matters starting with what it is, what it takes to make it happen,

and how CTOs can better explain it to stakeholders to get buy-in that overcomes its

initial challenges.

Old and New Cloud-Native Approach

Businesses generally agree that applications should be built to run in a cloud

environment. But the cloud-native app development approach isn’t clear to

everyone. Most legacy apps are the product of dev teams using the traditional

waterfall method with a phased release approach that lasts months.

It’s true that traditional, monolithic app development is easier to develop, manage,

and deploy. These apps become harder to manage and update as they grow because

of interdependencies that impact each other. This leads to difficult app updates and

failures.

Cloud-native app development takes a modular and flexible agile architecture

approach that delivers:

• On-demand horizontal scaling

• Support across multiple environments

• Application portability

• Continuous development and delivery for shorter cycle times

The Cloud Native Computing Foundation (CNCF) defines cloud-native as a means to

empower organizations to build and run scalable applications in public, private and

hybrid clouds. Continuous integration/continuous deployment (CI/CD) pipelines

are the primary workflow used in cloud-native app development along with:

• Immutable infrastructure

• Serverless

• Service meshes

• DevOps process

https://github.com/cncf/toc/blob/main/DEFINITION.md

• Containers

• Microservices

• Declarative application programming interfaces (APIs)

Cloud-native development is all about building and updating apps quickly in a way

that takes advantage of the distributed computing model. This makes them more

scalable, elastic, resilient, and flexible. To understand why that matters in business

terms requires breaking it down to a more business-oriented understanding of the

old way of creating applications and the cloud-native approach.

The Key Elements of Cloud-Native
Development

For an application to be considered ‘cloud native’, its architecture and development

process will feature all the elements that we’ve laid out above. But to understand

how cloud-native works, we need a basic definition of each of these elements.

Containers
Cloud-native application architecture is based on dynamically orchestrated

containers. Containers hold the services that run the application like load balancing

and networking. This makes the application portable so it can run in any cloud

environment without integration challenges. As an organization’s containers grow,

Kubernetes Orchestration enables efficient management.

Microservices
Microservices architecture further splits the application into independent parts for

running each application process as a service. These services communicate via

application programming interfaces (APIs) or messaging where services:

• Perform a single function and operate independently

• Can be designed, tested, deployed, or replaced without affecting other

services

• Enable dev teams to scale and make corrections quickly which reduces

technology and business risk

https://microservices.io/

As we split more applications into more microservices, service meshes make it

easier to handle the challenges of running a service such as monitoring, networking,

and security.

Serverless
Serverless is where the cloud provider runs the server and manages machine

resource allocation rather than the Ops team. This makes it easier for Dev teams to

focus on code rather than the run environment, which:

• Improves development pipeline efficiency and security

• Reduces costs by lowering the need for specialists’ expertise in keeping

the app running on-prem

• Further reduces server costs based on what is used as opposed to on-

prem server/hardware Capex

Continuous Integration / Continuous Delivery (CI/CD)
The continuous integration and continuous delivery (CI/CD) pipeline are the

centerpiece of delivering higher quality apps with faster and more stable updates

via cloud-native app development. These pipelines use cloud-native tools and

services like Jenkins to automatically test and deploy code modifications to the

production environment.

Continuous development processes enable the delivery of code changes to a testing

or production environment after the build stage. The continuous flow of new

updates and features means businesses can improve services for banking

customers, healthcare application service providers and eCommerce customers as

just three examples. Cloud-native tools like Jenkins automate the DevOps workflow

by starting testing when developers modify or add code to the app.

The DevOps culture that underpins these processes and works environment allows

development and operations teams to work together towards the goal of high

quality, availability, and security of applications delivered and updated quickly. The

agile method drives the fast and easy changes and updates by splitting the

https://cloud.google.com/architecture/service-meshes-in-microservices-architecture#:~:text=A%20service%20mesh%20is%20a,microservices%20on%20a%20chosen%20infrastructure.

development process into time windows with a continuous feedback loop. The

result is faster, more effective, and innovative AppDev where dev and op silos are

eliminated to get the app from design to minimal viable product (MVP)as fast as

possible.

In part two of this blog, we’ll look at how cloud-native development benefits

businesses in terms of applications used for products, services, operations, and

customer experience.

	Part 1: Why Does Cloud Native Development Matter?
	Understanding the elements of a cloud-native development approach
	Old and New Cloud-Native Approach
	The Key Elements of Cloud-Native Development
	Containers
	Microservices
	Serverless
	Continuous Integration / Continuous Delivery (CI/CD)

